Characterizing Attention with Predictive Network Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Attention with Predictive Network Models.

Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional ...

متن کامل

Inference for Neural Network Predictive Models with Impulse Interventions

Neural Networks (NN) have demonstrated remarkable time series fitting and prediction abilities, outperforming in several applications other methods and particularly linear models, such as dynamic linear regression. However, due to their nature, NNs are not easy to interpret and are often considered as black box models. The importance of each independent variable is hard to estimate and therefor...

متن کامل

Characterizing Microblogs with Topic Models

As microblogging grows in popularity, services like Twitter are coming to support information gathering needs above and beyond their traditional roles as social networks. But most users’ interaction with Twitter is still primarily focused on their social graphs, forcing the often inappropriate conflation of “people I follow” with “stuff I want to read.” We characterize some information needs th...

متن کامل

Some Conditions for Characterizing Minimum Face in Non-Radial DEA Models with Undesirable Outputs

The problem of utilizing undesirable (bad) outputs in DEA models often need replacing the assumption of free disposability of outputs by weak disposability of outputs. The Kuosmanen technology is the only correct representation of the fully convex technology exhibiting weak disposability of bad and good outputs. Also, there are some specific features of non-radial data envelopment analysis (DEA...

متن کامل

Characterizing neural dependencies with copula models

The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that can simultaneously account for (1) marginal distributions over single-neuron spike counts that are discrete and non-negative; and (2) joint distributions over the responses of multiple neurons that are often strongly dependent. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in Cognitive Sciences

سال: 2017

ISSN: 1364-6613

DOI: 10.1016/j.tics.2017.01.011